Learning Geometric Primitives in Point Clouds
نویسندگان
چکیده
Primitive recognition in 3D point clouds is an important aspect in reverse engineering. We propose a method for primitive recognition based on machine learning approaches. The machine learning approaches used for the classification are linear discriminant analysis (LDA) and multi-class support vector machines (SVM). For the classification process local geometric properties (features) of the point cloud are computed based on point relations, normals, and principal curvatures. For the training phase point clouds are generated using a simulation of a laser scanning device based on ray tracing with an error model. The classification rates of novel, curvaturebased geometric features are compared to known geometric features to prove the effectiveness of the approach.
منابع مشابه
Support Vector Machines for Classification of Geometric Primitives in Point Clouds
Classification of point clouds by different types of geometric primitives is an essential part in the reconstruction process of CAD geometry. We use support vector machines (SVM) to label patches in point clouds with the class labels tori, ellipsoids, spheres, cones, cylinders or planes. For the classification features based on different geometric properties like point normals, angles, and prin...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملMan-made Surface Structures from Triangulated Point Clouds
Man-made Surface Structures from Triangulated Point Clouds Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing ...
متن کاملFitting Range Data to Primitives for Rapid Local 3D Modeling Using Sparse Range Point Clouds
Techniques to rapidly model local spaces, using 3D range data can enable implementation of: (1) real-time obstacle avoidance for improved safety, (2) advanced automated equipment control modes, and (3) as-built data acquisition for improved quantity tracking, engineering, and project control systems. The objective of the research reported here was to develop rapid local spatial modeling tools. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014